(一)解决清洁能源规模开发和消纳难题,关键是扩大同步电网规模
我国风电、光伏资源集中的西部北部地区,受本地负荷水平低、系统规模小、跨区输电通道不足等因素制约,难以实现新能源发电的就地消纳,导致大量弃水、弃风、弃光。2014年,西南地区弃水近300亿千瓦时,“三北”地区弃风100亿千瓦时,西北地区弃光近25亿千瓦时。实践证明,我国目前基于行政管理区划和电力就地平衡逐步形成的,华北-华中、华东、东北、西北、南方、西藏6个交流同步电网的格局,已经不能适应清洁能源发展的需要。
由于新能源出力随机性、间歇性的固有特性,大规模新能源的开发外送消纳,对电网的汇集传输能力、调峰调频能力和转移支援能力都提出了更高要求,电网发展思路和发展格局都必须随之加以调整。总体来看,就是要围绕清洁能源开发布局,扩大同步电网规模,在现有同步电网格局基础上,通过将不同资源类型的送端电网(如西北、川渝藏)进行互联实现资源互补外送,将主要受端地区电网进行互联形成系统容量更大的坚强受端,最终形成送、受端结构清晰,交流和直流协调发展的格局。通过优化同步电网格局,一方面能够实现清洁能源跨区域跨流域多能互补,改善风电、太阳能出力随机性和间歇性,降低系统调峰需求,提高外送通道利用率,另一方面,也能有效提高受端电网系统规模,加强系统调峰能力和频率特性,从而提升接纳大规模清洁能源馈入的能力。
根据规划研究,通过构建西部、东部两个同步电网,到2020年,新能源跨区输送规模将可超过1.5亿千瓦,从而实现更大范围水火互济、风光互补、大规模输送和优化配置,弃风、弃光可以控制在5%的合理范围内,将从根本上解决西部地区清洁能源大规模开发和消纳难题,保障清洁能源高效利用。
(二)同步电网规模逐步扩大、数量逐步减少,是世界主要国家电网发展的必然趋势
从国外电网发展历程看,各国电网发展基本都遵循了同步电网不断联网融合这一规律。纵观北美、欧洲、俄罗斯、巴西、印度等世界主要国家/地区电网发展历程,电网结构与其能源资源分布、电力平衡方式、政治体制等息息相关,但无一例外都选择了大电网互联发展的道路。随着输电电压等级不断提升、电力技术的不断发展和突破,各国电网由孤立网到跨区互联、由初期弱联系到不断加强,同步电网的规模和覆盖范围都不断扩大。