3.表面改性的多涂层结构金属双极板将大幅优化镀层成本
双极板是输送和分配燃料的重要组件。过去主要用石墨制作双极板,它具有良好的导电性、导热性和耐腐蚀性,但石墨的脆性造成了加工困难,因此加工费用非常高,加上比较不易减薄厚度,因此综合成本较高。
近两年,金属板如不锈钢、铝、钛、镍等材料具有强度高、加工性能好、导电导热性强、成本低等优点,开始在部分领域替代石墨双极板。不过金属板在高温及酸性环境下易腐蚀,因此主流做法是在金属双极板表面镀上金属防护层。
我们认为,表面改性的多涂层结构金属双极板具备更大的发展空间,也能解决石墨双极板存在高成本问题。比如,瑞典ImpactCoatings公司推出的一种CeramicMaxPhase陶瓷涂层,将其涂在不锈钢板上来防腐蚀,该技术在节约成本上体现出显著优势,可将燃料电池的镀层成本降低到每千瓦5美元,并有望提早达到2017年美国能源部目标的每千瓦1美元。
4.规模化生产也会使得燃料电池系统价格下降
规模生产也将大幅降低燃料电池成本,因此,成本下降和销量上升是相辅相成的关系。
根据美国能源部燃料电池技术办公室(FCTO)的研究,当生产1000套质子交换膜燃料电池系统时,燃料电池堆栈的成本为154美元/kW,燃料电池系统的成本为216美元/kW而生产10000套质子交换膜燃料电池时,燃料电池堆栈的成本大幅下降到了61美元/kW,燃料电池系统大幅下降到103美元/kW。
以丰田Mirai为例,其燃料电池系统输出功率为114kW,如果年生产1000辆燃料电池汽车,每辆车的燃料电池系统价格为2.4万美金,而生产10000辆燃料电池汽车,每辆车的燃料电池系统价格仅为1.2万美金。
总之,经过对构成主要成本的关键组件质子交换膜、催化剂和双机板进行成本优化,同时加速推动规模化生产,燃料电池汽车的成本就能大幅下降。以丰田为例,其于2014年12月15日推出的燃料电池汽车Mirai在日本的售价为700万日元左右,享受政府补贴后500万日元,折合人民币29.85万左右,已经达到初步向市场推广的基础。
二、燃料电池汽车产业配套更加完善
目前制氢成本、运输氢气成本较高,以及加氢站等基础设施不完善都对燃料电池汽车发展构成制约。
从常规认知不同的是,我们拆解用户常规加燃料成本来测算,氢气并不比汽油车贵。按照日本石油前期发布的液化氢价格1000日元/kg,丰田Mirai的氢气罐每次可以加氢气5kg,一次加满氢气罐需要5000日元,按照现行汇率相当于人民币298元。按续航力650km测算,每公里不到五毛钱。而常规2.0T汽油车每公里约花费7-8毛钱。也就是说,目前用户的日常加氢成本还会低于加油成本。如果未来制氢成本进一步下滑,燃料电池汽车给用户带来的边际成本改善就更加明显,行业发展有机会加速。
1.工业制氢已经部分得到解决,生物质及太阳能制氢值得期待
氢主要以化合物存在于自然界,例如水、天然气、石油中。目前,大约有95%的氢气来自于石油化工业。工业化氢气制备方式有很多种,目前来看,天然气转换制氢或石油化工等工业活动副产品氢气分离性价比较高。
短期内氢气制备主要靠电解水和天然气、甲醇、煤等燃料制备。
(1)以天然气、石油、甲醇为原料裂解制取氢气是当今制取氢气最主要的方法。目前,美国大部分氢气是通过大规模天然气转化而来,这是目前成本较低且环保的制备氢气的方法。
(2)在生产合成氨、合成甲醇、石油炼制等工业过程中氢气作为一种副产品可以被生产和分离出来。
(3)水电解制氢是目前应用较广且比较成熟的方法之一。但水电解制氢能耗仍高,一般每立方米氢气电耗为4.5-5度左右,因此,工业制氢一般不用这种方式。
从中期来看,制氢技术主要基于可再生资源如生物质制氢。生物质资源丰富,是重要的可再生能源,生物质可通过气化和微生物进行制氢,目前仍比较考验转化技术。
长期来看,以太阳能为基础的零排放制氢技术将成为可能,目前这种技术的转化率还比较低,但是已经被日本厂商用作太阳能加氢站,作为临时性和补充性的一种氢燃料补给方式存在。2015年12月25日,本田技研工业设置于和光本社大厦的SHS加氢站正式开始使用,SHS加氢站使用本田独自开发的高压水电解系统PowerCreator为核心,使用太阳能发电而来的电力运转,实现无排放的氢生产。