行业垂直门户网站

设为首页 | 加入收藏

您当前的位置:北极星智能电网在线 > 正文

新能源大规模接入下的未来电力系统将如何演化?(4)

北极星智能电网在线  来源:中国电机工程学报  作者:谢宇翔 张雪敏 罗金山 夏德明 张艳  2018/5/17 8:19:17  我要投稿  

由表6可见,该情形下西北地区已不再需要外送电能,这是因为电力需求较大的华北地区获得了更多的分布式电源的支持,仅需拥有众多核电机组的华东地区为之提供电量即可满足要求,而华东送电相比西北送电更为经济。

这两种场景下的成本、整体收益以及每百MW(km)的单位价值统计如表7所示。

表7 两种分布式场景下系统成本情况

可见,新技术如果能够尽快成熟应用,对电源和输电设备建设成本的降低将起到非常可观的作用。长期的电源和电网规划需要考虑技术进步的作用并制定相应的策略,以便减少不必要的资源浪费。

5 结论

本文提出了考虑新能源大规模接入的未来电网演化模型,并将其应用于国网经营区算例,得到了未来40年电网演化情况,并进行了相应的分析。结果显示,所提出的模型能够对大规模系统进行长时间演化模拟,并给出各时期电网状态的定量数据。所得结果揭示了未来电网在各种发展模式下电力流和电力格局情况。不同场景之间的演化结果对比体现了各前沿技术所具有的价值,可以为后续的技术研发及长期能源政策制定提供定量参考。

为了提供更加实用的长期电力发展战略参考,还需要在所提方法基础上进一步完善对电源规划、电网规划以及分布式发电等技术的模拟,以及安全性校核等工作。

附录A 演化边界条件设定

各区域负荷的初始增速依据文献[23]以及文献[24]的2015年数据确定。考虑到随着时间推移,经济增速放缓,也会导致负荷的增长减慢,因此在前5年的演化中增速参考当前值确定,而5年后增速减少,15年后增速再减少直至演化结束。

具体各区域的初始负荷量以及增速设定如表A1所示。

表A1 各区域初始负荷量和增速

各时期的总负荷量统计如表A2所示。

表A2 各时期总负荷量

这一结果与文献[11]的预测,即到2050年时总负荷大约是当前3倍基本相符。

由于后效性的存在,对长时间的演化而言,各负荷点精确的位置并无意义。因此,采用文献[19]中的抽象化方法,即起始时电网不按当前实际拓扑进行连结,而是以各省省会及直辖市为中心,区域面积为半径随机分配初始变电站,且最低电压等级定为500kV/750kV。这样的抽象化能降低初始系统的规模,加快求解速度。

在电源方面,考虑水电将在2030年左右达到饱和,而核电受政策影响,依据文献[11]确定水电和核电在一年中的总发电量约束如表A3所示。

表A3 能源总量约束

事实上,水电的总量约束与可利用水资源总量有关,因此这一总量约束是基本确定的;而核电主要受到政策限制,这是人为因素,因此可以考虑两种较为保守的场景,其具体的核电总量设定如表A4所示。

因为近期的核能发展政策已经制定完成,在前期的核能开发量不应被改变。总量的减少是通过减低后期的可利用核能增长速率实现的。

表A4 核能总量约束

为计算建设成本,综合文献[25-26]中的数据,确定各类机组和不同电压等级的变电站及线路的成本,具体见表A5—A7。(其中机组容量取100MW,线路长度取100km,各电压等级变电站容量分别为8000/4000/2000MW。)

表A5 各类机组成本列表

表A6 各电压等级线路成本列表

表A7 各电压等级变电站成本列表

在表A5的设定中,风电和光伏均在15年后开始成本的下降,下降幅度分别是0.2亿元/年和0.3亿元/年,直至6亿元。

实际上,无论是机组、线路或是变压器的单位成本均随着所处地区的经济条件、自然条件以及具体的建设时间等有很大差异,显然在演化模型中将这些因素全部考虑进来并不现实,因而所用的成本均是典型成本值而忽略了个体之间的差异。由于总体的建设规模大,平均成本值应与典型成本值接近。

根据文献[31-32],不同类型发电的单位发电成本如 表A8所示。

表A8 不同类型发电单位成本

由于水电和核电已受到总量的约束,已建成机组应尽可能多发。因此实际程序中设置了较小的单位成本以达到这一目的。

评价函数的参数K的设定将影响问题的求解效率以及最终结果。本文算例中K取为1。

前沿技术场景中各参数的含义及相应取值见表A9。

表A9 参数含义及取值表

考虑到技术本身特性,分布式发电只用于受入电区域,而另两种技术用于所有区域。

参考文献

[1] 国网能源研究院.2015中国新能源发电分析报告[M].北京:中国电力出版社,2015. State Grid Energy Research Institute.2015 China new energy generation analysis report[M].Beijing:China Electric Power Press,2015(in Chinese).

[2] 衣立东,朱敏奕,魏磊,等.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,34(2):129-132. Yi Lidong,Zhu Minyi,Wei Lei,et al.A computing method for peak load regulation ability of Northwest China Power Grid connected with large-scale wind farms[J].Power System Technology,2010,34(2):129-132(in Chinese).

[3] 张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158. Zhang Ning,Zhou Tianrui,Duan Changgang,et al.Impact of large-scale wind farm connecting with power grid on peak load regulation demand[J].Power System Technology,2010,34(1):152-158(in Chinese).

[4] 姚天亮,郑海涛,杨德洲,等.甘肃河西500万kW光伏就地消纳及调峰分析[J].中国电力,2014,47(3):14-18. Yao Tianliang,Zheng Haitao,Yang Dezhou,et al.Analysis on local consumption and peaking issues of 5000 MW PV in Hexi area of Gansu province[J].Electric Power,2014,47(3):14-18(in Chinese).

[5] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J].中国电机工程学报,2016,36(19):5103-5110. Liu Zhenya.Research of global clean energy resource and power grid interconnection[J].Proceedings of the CSEE,2016,36(19):5103-5110(in Chinese).

[6] 肖立业,林良真.超导输电技术发展现状与趋势[J].电工技术学报,2015,30(7):1-9. Xiao Liye,Lin Liangzhen.Status quo and trends of superconducting power transmission technology[J].Transactions of China Electrotechnical Society,2015,30(7):1-9(in Chinese).

[7] 艾欣,董春发.储能技术在新能源电力系统中的研究综述[J].现代电力,2015,32(5):1-9. Ai Xin,Dong Chunfa.Review on the application of energy storage technology in power system with renewable energy source[J].Modern Electric Power,2015,32(5):1-9(in Chinese).

[8] 朱兰,严正,杨秀,等.计及需求侧响应的微网综合资源规划方法[J].中国电机工程学报,2014,34(16):2621-2628. Zhu Lan,Yan Zheng,Yang Xiu,et al.Integrated resources planning in microgrid based on modeling demand response[J].Proceedings of the CSEE,2014,34(16):2621-2628(in Chinese).

[9] Quiroga G A,Kagan H,Amasifen J C C,et al.Evaluation of distributed generation impacts on distribution networks under different penetration scenarios[C]//Proceedings of 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM).Montevideo,Uruguay:IEEE,2015:136-141.

[10] Quiroga G A,Kagan H,Amasifen J C C,et al.Study of the Distributed Generation Impact on Distributed Networks, Focused on Quality of Powe[C]//Proceedings of 17th International Conference on Harmonics and Quality of Power (ICHQP).Belo Horizonte,Brazil:IEEE,2016:855-860.

[11] 周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008. Zhou Xiaoxin,Lu Zongxiang,Liu Yingmei,et al.Development Models and Key Technologies of Future Grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008(in Chinese).

[12] 鲁宗相,黄翰,单保国,等.高比例可再生能源电力系统结构形态演化及电力预测展望[J].电力系统自动化,2017,41(9):12-18. Lu Zongxiang,Huang Han,Shan Baoguo,et al.Morphological evolution model and power foreing prospect of future electric power systems with high proportion of renewable energy[J].Automation of Electric Power Systems,2017,41(9):12-18(in Chinese).

[13] 周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望——试论三代电网[J].中国电机工程学报,2013,33(22):1-11. Zhou Xiaoxin,Chen Shuyong,Lu Zongxiang.Review and prospect for power system development and related technologies: a concept of three-generation power systems[J].Proceedings of the CSEE,2013,33(22):1-11(in Chinese).

[14] 梅生伟,龚媛,刘锋.三代电网演化模型及特性分析[J].中国电机工程学报,2014,34(7):1003-1012.Mei Shengwei,Gong Yuan,Liu Feng.The evolution model of three-generation power systems and acteristic analysis[J].Proceedings of the CSEE,2014,34(7):1013-1012(in Chinese).

[15] 刘开俊,李隽,罗金山,等.同步电网发展趋势与中国能源互联网发展研究[J].电力建设,2016,37(6):1-9.Liu Kaijun,Li Jun,Luo Jinshan,et al.Synonous power grid development trend and China's energy interconnection development[J].Electric Power Construction,2016,37(6):1-9(in Chinese).

[16] 张节潭,苗淼,范宏,等.含风电场的双层电源规划[J].电网技术,2011,35(11):43-49. ZhangJietan,Miao miao,Fan Hong,et al.Bi-level generation expansion planning with large-scale wind farms[J].Power System Technology,2011,35(11):43-49(in Chinese).

[17] 王淳,程浩忠.基于模拟植物生长算法的配电网重构[J].中国电机工程学报,2007,27(19):50-55.Wang Chun,Cheng Haozhong.Reconfiguration of distribution network based on plant growth simulation algorithm[J].Proceedings of the CSEE,2007,27(19):50-55(in Chinese).

[18] Guo Jinpeng,Zhang Xuemin,Huang Shaowei,et al.A novel evaluation method for power grid evolution with economy and security contraints[C]//Proceedings of 2014 IEEE PES General Meeting.National Harbor,MD,USA:IEEE,2014:1-5.

[19] 卢明富. 小世界电网生长演化模型及其复杂性研究[D].北京:清华大学,2009. Lu Mingfu.Evolutive model of small-world power grid and its complexity[D].Beijing:Tsinghua University,2009(in Chinese).

[20] Roh J H,Shahidehpour M,Fu Y.Market-based coordination of transmission and generation capacity planning[J].IEEE Transactions on Power Systems, 2007,22(4):1406-1419(in Chinese).

[21] Alizadeh B,Jadid B.Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming[J].IET Generation,Transmission & Distribution,2011,5(9):948-960.

[22] Floyd R W.Algorithm 97:shortest path[J].Communications of the ACM,1962,5(6):345.

[23] 王敏. 国家电网公司年鉴[M].北京:中国电力出版社,2016. Wang Min.State Grid Corporation of China’s yearbook[M].Beijing:China Electric Power Press,2016(in Chinese).

[24] 王敏. 国家电网公司年鉴[M].北京:中国电力出版社,2015. Wang Min.State Grid Corporation of China’s yearbook[M].Beijing:China Electric Power Press,2015(in Chinese).

[25] 电力规划设计总院.电网工程限额设计控制指标(2013年水平)[M].北京:中国电力出版社,2014.Electric Power Planning & Engineering Institute.Limited design control index of Power Grid Engineering (2013 Level)[M].Beijing:China Electric Power Press,2014.

[26] 电力规划设计总院.火电工程限额设计控制指标(2013年水平)[M].北京:中国电力出版社,2014.Electric Power Planning & Engineering Institute.Limited design control index of Thermal Plant Engineering(2013 Level)[M].Beijing:China Electric Power Press,2014(in Chinese).

[27] 国务院办公厅.能源发展战略行动计划(2014-2020年)[EB/OL] ..

[28] World Energy Outlook Special Report:Energy and Air Pollution[M].Paris:International Energy Agency,2016.

[29] 刘振亚. 中国电力与能源[M].北京:中国电力出版社,2012. Liu Zhenya.Electric Power and Energy in China [M] .Beijing:China Electric Power Press,2012.

[30] 中国工程院.中国能源中长期(2030、2050)发展战略研究:电力˙油气˙核能˙环境卷[M].北京:科学出版社,2011. Chinese Academy of Engineering.Research on the Energy Development Strategy of China in Mid and Long-term (2030-2050):Power Oil Nuclear Environment [M].Beijing:Science Press,2011(in Chinese).

[31] 苏剑,周莉梅,李蕊.分布式光伏发电并网的成本/效益分析[J].中国电机工程学报,2013,33(34):50-56.Su Jian,Zhou Limei,Li Rui.Cost-benefit analysis of distributed grid-connected photovoltaic power generation[J].Proceedings of the CSEE,2013,33(34):50-56(in Chinese).

[32] 徐蔚莉,李亚楠,王华君.燃煤火电与风电完全成本比较分析[J].风能,2014(6):50-55. Xu Weili,LiYanan,Wang Huajun.Comparison and analysis between coal and wind generation cost[J].Wind Energy,2014(6):50-55(in Chinese).

分享到:
北极星投稿热线:陈女士 13693626116 邮箱:chenchen#bjxmail.com(请将#换成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

热点关注
国网826号文解读

国网826号文解读

昨天国网公司下发了《关于进一步严格控制电网投资的通知》(国家电网办【2019】826号文)。文中提出了“三严禁、二不得、二不再”的投资建设思路。个人认为,这不仅仅是一个文件,而是国网公司整体发展战略转型的一个标志。作为世界上最大的电网企业,国网公司每年因投资建设所需的采购数额巨大,对电

--更多
最新新闻
新闻排行榜

今日

本周

本月

深度报道
相关专题

关闭

重播

关闭

重播