记者:针对于您说的以上原因,您认为解决新能源发展弃风、弃光的关键技术在哪里?
卢强:一百多年前,人类自有首个电力系统以来就面临着一个最大难题,那就是电力不能够大量工业化地储存。若这一问题得到解决,电力系统运行的稳定性问题、经济性问题以及电能质量(主要指风光并网带来的电力系统频率波动)问题皆迎刃而解。
记者:储能有很多种技术,包括化学储能、电化学储能和机电储能等。根据2014年国际能源署统计,目前抽水蓄能容量占绝大多数,压缩空气储能紧随其后。今年年初,您带领的科研团队成功建成了世界上首套500千瓦非补燃压缩空气储能发电示范系统。请您介绍非补燃压缩空气储能技术的发电原理,其具有哪些优势?目前这项技术发展状况如何?
卢强:压缩空气储能技术是将弃光、弃风、弃水(小水电站)或低谷电通过多级压缩机把电能转换为分子势能存入压力储气空间,待发电时通过释放高压气流,射入气轮机带动发电机发电。大规模的压缩空气储能对于聚纳废弃的新能源、抚平风光电站功率的波动、削峰填谷、增加有功与无功旋转备用等方面皆具有重大意义。
目前压缩空气储能技术主要分为补燃式、非补燃式两大类别,国际上已用的是补燃式,如德国与美国。所谓补燃式压缩空气储能仍以燃烧天然气以求提高其效率,故其本质仍然是燃气轮机,其主要消耗的能源仍是化石能源,即天然气,故这种储能方式不符合我国力求降低碳排放的国情。
国家电网公司于2012年10月结合清华大学电机系、中国科学院理化所和中国电科院启动了一项无燃烧压缩空气储能研究计划。该研究计划于2015年4月以500千瓦无燃烧压缩空气储能发电系统的建成,且发电功率达到设计值95%以及其他各项指标均达设计要求通过了验收,并获五项中国发明专利受理和一项美国发明专利受理而宣告成功。这项研发成果达到了真正意义上的零排放,是冷热电三联供系统,“电换电”效率均高于欧美各国。此外,该系统可提供数以亿千瓦小时计的电储存能力,单位千瓦投资合理,寿命周期不小于40年,故全寿命周期投资极大低于国外进口的被认为性价比最高的磷酸铁锂电池。
但是,目前工程化的推进仍较困难,对于这一创新项目,企业仍十分谨慎,需要时间去核算回报率和回收年限,故该项技术要想真正转化为现实生产力,可能尚需时日。