分布式发电装置并网
欧盟各国的可再生能源发电比例已经从1997年的13.9%增加到2010年的22.1%。
欧洲议会2009年通过了促进可再生能源利用的指令,规定到2020年欧盟地区的可再生能源供应量应达到全部能源供应量的20%。而欧盟15个成员国(EU15)(2004年前欧盟的15个成员国)的可再生能源工业的目标是2020年可再生能源发电量达到总发电量的33%。在一系列能源政策的引导下,欧洲确定了分布式发电的发展方向。与之相适应的研究重点集中在动力与能源转换设备、资源深度利用技术、智能控制和群控优化技术以及综合系统优化技术上。其中,与电网相关的研究主要针对分布式发电系统的电网接入研究,以及解决分布式发电与现有电网设施的兼容、整合和安全运行等问题。
1.可再生能源的挑战
实现电力供应与需求的互动、协调,最大限度发挥现有电力系统的潜力,实现电力系统效率、可靠性以及电能质量的全面提高,并为用户带来经济效益是欧洲智能电网的基本目标。然而,大量分布式微型发电装置的并网是欧洲智能电网发展遇到的现实问题。2009年初,欧盟有关圆桌会议进一步明确要求依靠智能电网技术将大西洋的海上风电、欧洲南部和北非的太阳能电融入欧洲电网,实现可再生能源的跳跃式发展。
在英国,智能电网的探索方向是可再生能源发电和智能配电。英国能源公司计划建设的8.6GW潮汐发电工程,将成为世界上最大的潮汐发电站,并计划于2020年把利用风力发电获得的电力直接输入城市电网。
但是,可再生能源利用存在一个突出问题,就是目前得到广泛应用的太阳能和风能发电受气象条件影响严重,供应状况稳定性差,气象条件的任何变化都会立即导致发电量变化。在电力需求增加或供应下降时,电网频率有可能发生变化。当大型风电场的风速明显降低,或太阳能电站上空飘过一片云,电网频率可能会下降。若频率下降幅度达到1Hz,应急发电装置必须立即增加供电量;若电网频率下降幅度达到48.8Hz,欧洲电网运行管理中心必须切断部分线路的供电,这意味着一些地区会因此停电。
在英国电网中,典型的电能流向是从北向南,在低压用户端(电压为400V)有一定数量的家庭使用燃气热电联产机组或太阳能光伏发电装置、风力发电装置。虽然原来的输电网仍然存在,但是新建的输电网更多是互动供电网络。互动住宅供电可以将住宅中剩余的电力逆向输入电网,这是英国电力法中已明确规定的运行方式。因此,电网公司面临着技术上的改进和创新(如需要双向保护等),这种互动供电给电网的稳定控制和调度造成很大困难,不但给电网技术、体系、市场、管理等方面造成影响,而且对传统的供电、发电、输电、配电也是一种挑战。