分流电阻器技术使用放置在负载电流线路上的小(分流)电阻器。当负载电流通过该电阻时,会形成一个小的电压降。这个电压降作为输入馈送到AFE中,后者可以测量相应的电流消耗。
电流互感器(CT)方法与普通变压器的工作方式相同,负载电流(已消耗电流)磁通在二级CT线圈中生成少量电流,然后将电流通过负载电阻器,将其转换成相应的电压,然后再馈送到MCU的AFE。
Rogowski线圈是另一种测量电流的方法。这类线圈对于变化较大的电流也有不错的测量效果。然而,它们以时间差分形式提供输出。这就是需要一个积分器获得相应电流值的原因。
对比上述三种方式,分流电阻器技术是最便宜的;然而,该技术很难满足高电流测量要求,并且存在DC偏移的问题。电流互感器(CT)能够比分流电阻器技术测量更多的电流,然而,它们本身也存在问题:它们的成本更高,存在饱和、滞后和DC/高电流饱和等问题。
第三种Rogowski线圈法的测量范围比CT小,对大电流范围表现出较好的线性特性,也不存在饱和、滞后或DC/高电流饱和问题。
然而,它的成本只比分流电阻器略微高一点。考虑到电流变化和消耗类型,分流电阻器技术主要用于消费/住宅应用,Rogowski线圈在工业应用中的使用更广泛。
挑战2:电流消耗
SoC的电流消耗是影响应用/解决方案的电池寿命的主要因素。因此,在电池供电模式下运行的应用要求SoC具有非常低的电流消耗。燃气计/流量计不与电源直接连接。
因此,它们只能由电池进行供电。因此,与电表相比,这些应用对电流更加敏感。这一特性非常重要,因为计量表的平均使用寿命约为15年,客户当然不希望每隔几年就更换电池。
因此,与电表相比,燃气/流量计应用对这些限制更加敏感。在典型燃气/流量计解决方案中,仪表大多数时间都保持在低能耗状态。它将定期隔唤醒以计算能量消耗,存储数值,并可能重置脉冲计数器等。
另外,燃气/水/热量的消耗模式不同于电能,因为它们不像电那样无时无刻不在使用。因此,内核不必总是处于通电状态。“低功率模式电流”将扮演重要的角色。许多公司认为低功耗模式电流的范围是1.1μA-2μA(休眠模式待机电流)。
另一个关注领域是SoC的启动时间及相关的电流消耗。由于应用要求仪表必须定期唤醒,因此启动时间和启动电流将非常关键。因此,此类SoC中使用的内核比处理速度等其它因素更加重要。
挑战3:安全、防护和检测
安全性、篡改保护和检测性能主要取决于最终应用的复杂性。满足这项要求可以很简单,只需要能够检测到是否有人试图打开仪表盖,或是否非法访问SoC并更改计费软件。
但是,也可能会非常复杂,要让连接以太网的仪表能够防止黑客攻击或保护仪表中的用户数据,这是GPRS/CDMA/ZigBee网络解决方案的一部分。这些要求存在很大的差异,因为计量能够或应该能够支持不同类型的解决方案。
对于独立解决方案,仪表不属于基于网络的计量解决方案的一部分,抄表和计费都是手动进行的,对安全性、防护和检测的要求会很低,因为攻击单个仪表不会影响其它仪表。因此,服务提供商可能会选择前面提到的比较简单的检测方案。