行业垂直门户网站

设为首页 | 加入收藏

您当前的位置:北极星智能电网在线 > 技术文章 > 正文

基于蒙特卡洛模拟的分布式风光蓄发电系统可靠性评估(3)

4.3 蓄电池容量的影响

分布式电源容量和外部系统最大有功功率同基本测试算例一致且保持恒定,改变蓄电池总容量,LOLE 和LOEE 的变化情况如图2、3 所示。

当蓄电池总容量为0 时,3 种充电策略的可靠性指标相同。随着蓄电池容量开始增加,指标LOLE和LOEE 迅速减小,尤其是策略3,这说明了配置储能装置对提升以风电、光伏等可再生电源为主的分布式发电系统的可靠性具有明显作用。随着蓄电池容量的进一步增加,LOLE 和LOEE 的减小幅度越来越小,系统可靠性趋于饱和。当蓄电池的容量较小时,策略3 的可靠性水平最高。但是,随着蓄电池容量的不断增加,策略2 的可靠性水平将超过策略3。在当前的分布式电源容量配置下,3 种充电策略中,策略1 的可靠性水平最低。

4.4 分布式电源容量的影响

蓄电池容量 12000kW·h 固定不变,改变分布式电源容量(风机、光伏),分别计算外部系统最大功率为600kW和300kW情形下系统的可靠性指标变化情况,分别如表4、5 所示。

当分布式电源容量为0 时,策略3 的可靠性水平最高,策略1 和2 的可靠性水平相同。随着分布式电源容量的增加,3 种策略的可靠性水平均大幅提升,其中策略1 和2 的提升速度高于策略3,特别是在外部系统最大功率较小(300kW)的情形下,当分布式电源容量充足时,策略1 的可靠性水平甚至可高于策略3。

5 结论

本文应用铅酸蓄电池两池模型,提出了一种更加精确的含风机、光伏与铅酸蓄电池的分布式发电系统可靠性评估蒙特卡洛模拟方法。应用本文的评估方法,通过算例详细分析了外部系统容量、分布式电源容量、蓄电池容量以及蓄电池充电策略对分布式发电系统可靠性指标的影响。结果表明:

1)作为储能装置,蓄电池对提升以风电、光伏等可再生电源为主的分布式发电系统的可靠性具有明显作用;

2)外部系统容量和分布式电源容量均会对系统可靠性水平产生较大影响;

3)应综合考虑外部系统容量、分布式电源容量和蓄电池容量,合理选择蓄电池的充电策略。本文提出的方法可为分布式发电系统的优化配置研究提供参考。

参考文献

[1] Filion A . Renewable energy options-overview and trend[C]//Proceedings of the 28th Annual National Conference of the Solar Energy Society of Canada.Queen’s University,Kingston:SESCI,2003.

[2] Billinton R,Chen H,Ghajar R.A sequential simulation technique for adequacy evaluation of generating system including wind energy[J].IEEE Transactions on Energy Conversion,1996,11(4):728-734.

[3] Vallee F,Lobry J,Deblecker O.System reliability assessment method for wind power integration[J].IEEE Transactions on Power Systems,2008,23(3):1288-1297.

[4] Huang D,Billinton R.Effects of wind power on bulk system adequacy evaluation using the well-being analysis

framework[J].IEEE Transactions on Power Systems,2009,24(3):1232-1240.

[5] Wu L,Park J,Choi J,et al.Probabilistic reliability evaluation of power systems including wind turbine generators using a simplifiedmulti-state model:a case study[C]//IEEE Power & Energy Society General Meeting.Calgary,AB,Canada:IEEE,2009:26-30.

[6] Park J,Wu Liang,Choi J,et al.A probabilistic reliability evaluation of a power system including solar/photovoltaic cell generator

[C]//IEEE Power & Energy Society General Meeting.Calgary,AB,Canada:IEEE,2009:1-6.

[7] Billinton R,Bagen,Cui Y.Reliability evaluation of small stand-alone wind energy conversion systems using a time series simulationmodel[J] . IEE Proceedings-Generation , Transmission and Distribution,2003,150(1):96-100.

[8] Billinton R.Reliability consideration in the utilization of wind energy,solar energy and energy storage in electric power systems[C]//International Conference on Probabilistic Methods Applied to Power Systems.Stockholm,Sweden:IEEE,2006:11-15.

[9] Hu P,Karki R,Billinton R.Reliability evaluation of generating systems containing wind power and energy storage[J] . IET Generation,Transmission and Distribution,2009,3(8):783-791.

[10] 孙瑜,Math B,Graham A.孤岛状态下含分布式电源的配电系统可靠性分析[J].电网技术,2008,32(23):77-81.

Sun Yu,Math B,Graham A.Reliability analysis of islanded distribution system with distributed energy resources[J] . Power System Technology,2008,32(23):77-81(in Chinese).

[11] Manwell J F,McGowan J G.Lead acid battery storage model for hybrid energy systems[J].Solar Energy1993,50(5):399-405.

[12] Karki R,Hu P,Billinton R.A simplified wind power generation model for reliability evaluation[J].IEEE Transactions on EnergyConversion,2006,21(2):533-540.

[13] Wang P,Billinton R.Time sequential distribution system reliability worth analysis considering time varying load and cost models[J].IEEE Transactions on Power Delivery,1999,14(3):1046-1051.

[14] 鲁宗相,郭永基.发输电系统概率安全性评估基本框架的研究[J].电网技术,2004,28(7):19-22.

Lu Zongxiang,Guo Yongji.Study on basic framework of probabilistic security evaluation of composite generation and transmission systems [J].Power System Technology,2004,28(7):19-22(in Chinese).

[15] Lambert T,Gilman P,Lilienthal P.Micropower system modeling with HOMER[M].New York:Wiley-IEEE Press,2006:379-418.

[16] 丘文千.用最大最小负荷倍数评估电网供电能力[J].华东电力,1994(10):29-30.

Qiu Wenqian.Evaluate power supply capability with multiple of the maximum and minimum load[J] .East China Electric Power ,1994(10):29-30(in Chinese).

[17] 丘文千.基于交流潮流模型的电网供电能力评价算法[J].浙江电力,2007,26(2):1-4.

Qiu Wenqian.Algorithm for evaluating power supply capability of power system based on AC power flow mode[J].Zhejiang Electric Power,2007,26(2):1-4 (in Chinese).

[18] 邱丽萍,范明天.城市电网最大供电能力评价算法[J].电网技术,2006,30(9):68-71.

Qiu Liping,Fan Mingtian.A new algorithm to evaluate maximum power supply capability of urban distribution network[J].Power System Technology,2006,30(9):68-71(in Chinese).

[19] 孙宏斌,张伯明,相年德.配电潮流前推回推的收敛性研究[J].中国电机工程学报,1999,19(7):26-29.

Sun Hongbin,Zhang Boming,Xiang Niande.Study on convergence on back/forward sweep distribution power flow[J].Proceedings of theCSEE,1999,19(7):26-29(in Chinese).

[20] 谢开贵,周平,刘洋.配电网络潮流计算的递推算法[J].电力系统自动化,2004,28(4):36-39.

Xie Kaigui,Zhou Ping,Liu Yang.Recursive load flow algorithm for

electric distribution networks[J] .Automation of Electric Power Systems,2004,28(4):36-39(in Chinese).

[21] 孙健,江道灼.基于牛顿法的配电网络Zbus 潮流计算方法[J].电网技术,2004,28(15):40-44.

Sun Jian,Jiang Daozhuo.A Zbus power flow calculation method for distribution network based on Newton method[J].Power SystemTechnology,2004,28(15):40-44(in Chinese).

来源:电网技术
北极星投稿热线:陈女士 13693626116 邮箱:chenchen#bjxmail.com(请将#换成@)
最新新闻

新闻排行榜

今日

本周

本月

相关专题